Rapid prototyping of concave microwells for the formation of 3D multicellular cancer aggregates for drug screening.
نویسندگان
چکیده
Microwell technology has revolutionized many aspects of in vitro cellular studies from 2D traditional cultures to 3D in vivo-like functional assays. However, existing lithography-based approaches are often costly and time-consuming. This study presents a rapid, low-cost prototyping method of CO2 laser ablation of a conventional untreated culture dish to create concave microwells used for generating multicellular aggregates, which can be readily available for general laboratories. Polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polystyrene (PS) microwells are investigated, and each produces distinctive microwell features. Among these three materials, PS cell culture dishes produce the optimal surface smoothness and roundness. A549 lung cancer cells are grown to form cancer aggregates of controllable size from ≈40 to ≈80 μm in PS microwells. Functional assays of spheroids are performed to study migration on 2D substrates and in 3D hydrogel conditions as a step towards recapitulating the dissemination of cancer cells. Preclinical anti-cancer drug screening is investigated and reveals considerable differences between 2D and 3D conditions, indicating the importance of assay type as well as the utility of the present approach.
منابع مشابه
Concave microwell array-mediated three-dimensional tumor model for screening anticancer drug-loaded nanoparticles.
UNLABELLED We investigated the effect of anticancer drug-loaded functional polymeric nanoparticles on drug resistance of three-dimensional (3D) breast tumor spheroids. 3D tumor models were built using concave microwells with different diameters (300-700μm) and nanoparticles were prepared using thermo-responsive poly(N-isopropylacrylamide) (PNIPAM)-co-acrylic acid (AA). Upon culturing with doxor...
متن کاملRapid fabrication of functionalised poly(dimethylsiloxane) microwells for cell aggregate formation.
Cell aggregates reproduce many features of the natural architecture of functional tissues, and have therefore become an important in vitro model of tissue function. In this study, we present an efficient and rapid method for the fabrication of site specific functionalised poly(dimethylsiloxane) (PDMS) microwell arrays that promote the formation of insulin-producing beta cell (MIN6) aggregates. ...
متن کاملApplication of Concave Microwells to Pancreatic Tumor Spheroids Enabling Anticancer Drug Evaluation in a Clinically Relevant Drug Resistance Model
Intrinsic drug resistance of pancreatic ductal adenocarcinoma (PDAC) warrants studies using models that are more clinically relevant for identifying novel resistance mechanisms as well as for drug development. Tumor spheroids (TS) mimic in vivo tumor conditions associated with multicellular resistance and represent a promising model for efficient drug screening, however, pancreatic cancer cells...
متن کاملStimuli-responsive microwells for formation and retrieval of cell aggregates.
Generating cell aggregates is beneficial for various applications ranging from biotechnology to regenerative therapies. Previously, poly(ethylene glycol) (PEG) microwells have been demonstrated as a potentially useful method for generating controlled-size cell aggregates. In addition to controlling cell aggregate size and homogeneity, the ability to confine cell aggregates on glass adhesive sub...
متن کاملElectrical Energy Demand Modeling of 3D Printing Technology for Sustainable Manufacture
The advent of 3D printers has been embraced globally within few years of its emergence. The surge in the acceptability of rapid manufacturing RM technology can be attributed to the depletion and cost of natural resources, waste reduction and sustainability criterion of manufactured parts. This rapidly evolving 3D printing technologies is predicted to grow exponentially especially for the manufa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced healthcare materials
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2014